

[^0]| Topic | Days | Standards | Needs to be Covered | Learning Targets and "I Can" Statements |
| :--- | :--- | :--- | :--- | :--- |

[^1]| Topic | Days | Standards | Needs to be Covered | Learning Targets and "I Can" Statements |
| :---: | :---: | :---: | :---: | :---: |
| | 2 Days | A.REI. 3
 A.CED. 3
 A.CED. 1 | solve linear inequalities
 represent constraints by inequalities and interpret solutions
 create inequalities and use them to solve problems | Learning Target: I can evaluate, solve and justify solutions for inequalities in one variable.
 - I can create inequalities and use them to solve problems. (A.REI. 3, A.CED.1, 3)
 - I can defend the reasonableness of a solution according to the context of the problem. (A.CED.3) |

[^2]| Topic | Days | Standards | Needs to be Covered | Learning Targets and "I Can" Statements |
| :---: | :---: | :---: | :---: | :---: |
| | 16 Days
 *Review Slop by graphs and using the formula.
 *Review putting equations into slope intercept form (solving for y)
 * Write equations of lines
 * Build functions | A.CED. 1
 A.CED. 2
 A.CED. 3
 A.REI. 10
 A.SSE. 1
 A.SSE. 2
 F.BF. 1
 F.BF. 2
 F.BF. 3
 F.IF. 1
 F.IF. 2
 F.IF. 3
 F.IF. 4
 F.IF. 5
 F.IF. 6
 F.IF.7a
 F.IF. 9
 F.LE. 2
 F.LE. 5
 G.GPE. 5 | represent and solve equations and inequalities graphically
 graph functions expressed symbolically and show key features of the graph (Max/Min, and x and y intercepts)
 create equations and represent their constraints
 define domain and range
 function notation (includes evaluation)
 interpret functions that arise in applications
 interpret the parameters in a linear function in terms of a context
 relate domain to the relationship it describes
 recursive functions - Basic understanding of the formula)
 calculate and interpret average rate of change (intervals among graphs/tables)
 vertical/horizontal translations of linear functions
 build functions
 prove the slope criteria for parallel and perpendicular lines
 Compare properties of linear function (y-intercepts) | Learning Target: I can apply the concept of a function to analyze and solve problems.
 - I can determine if a relationship between two sets of values, the domain and the range, is a function.(F.IF.1)
 - I can use and interpret function notation appropriately. (F.IF.2)
 - I can recognize sequences and match them to explicit functions. (F.IF.3)
 - I can relate the domain of a function to its graph and, where applicable, to the relationship it describes (F.IF.5)
 HP: I can explain the definition of a function and provide examples and nonexamples in a variety of ways.
 Learning Target: I can identify key features of a function and interpret them in terms of the context.
 - I can use a function rule to create a graph and a table. (F.BF.1)
 - I can describe a function as increasing, decreasing, or both. (F.IF.4)
 - I can identify intercepts from a table or graph and interpret them in terms of the context. (F.IF.4)
 - I can sketch graphs showing key features given a verbal description of the relationship. (F.IF.4)
 - I can calculate and interpret the average rate of change of a function over a specified interval. (F.IF.6)
 HP: I can compare the key features of two functions and interpret similarities and differences in terms of the context.
 Learning Target: I can create and analyze representations of linear functions.
 - I can create another representation of a linear pattern given any one of re cursive rule, function rule,table, graph, and/or contextual situation. (A.CED.1, 2, F.BF.1,2, F.LE.2)
 - I can determine and explain the rate of change and/or the initial value of a linear pattern given anyrepresentation.
 (A.SSE.1, F.IF.4,6)
 - I can rewrite linear expressions in equivalent forms. (F-FI.8)
 - I can provide a reasonable domain for a linear function given a contextual situation and/or a graph. (F-IF.5)
 - I can compare and contrast two different linear functions given any repre sentation. (F-IF.9)
 HP: I can write a recursive rule or a function rule when the rate of change and init ial value are notexplicitly stated. (SMP 1) |

[^3]| Topic | Days | Standards | Needs to be Covered | Learning Targets and "I Can" Statements |
| :---: | :---: | :---: | :---: | :---: |
| | 6 Days | A.CED. 3
 A.REI. 11
 A.REI. 12
 A.REI. 5
 A.REI. 6 | solve systems of equations exactly and approximately
 elimination and substitution method
 explain why the solutions work
 graph solutions to a system of linear inequalities (identify quadrant where the majority of the solution occurs)
 represent constraints on systems of equations/inequalities and interpret solutions as viable/non-viable | Learning Target: I can construct and solve systems of linear equations and inequalities.
 - I can represent problems as a system of two linear equations or inequalities. (A.CED.3)
 - I can solve a system of equations by tables and graphs. (A.REI.11, A.REI.6)
 - I can solve a system of linear equations by elimination. (A.REI.5)
 - I can defend the reasonableness of a solution according to the context of the problem. (A.CED.3)
 - I can graph a system of linear inequalities and discuss the solutions. (A.CED.3, A.REI.12) |

[^4]

[^5]| Topic | Days | Standards | Needs to be Covered | Learning Targets and "I Can" Statements |
| :---: | :---: | :---: | :---: | :---: |
| | $\begin{gathered} \hline 10 \\ \text { Days } \end{gathered}$ | A.CED. 2
 A.SSE. 1 a
 A.SSE. 2
 A.SSE. 3
 F.BF. 1
 F.IF. 4
 F.IF.7a
 F.IF.8a
 F.IF. 9 | interpret parts of an expressions, such as terms, factors, coefficients
 difference of squares
 factor quadratics to reveal zeros
 use the process of factoring to show zeros, extreme values, symmetry
 graph quadratic functions to show intercepts, max and min
 interpret functions that arise in applications in terms of context
 build a function that models a relationship between two quantities
 Be flexible in using multiple forms of quadratics from context
 Compare properties of 2 quadratics given in different forms. | Learning Target: I can write a rule to represent a quadratic function through arithmetic operations and in context.
 - I can rewrite quadratic functions in equivalent forms (limited to factored form and $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ form). (A.SSE.2, A.SSE.3, F.IF.8)
 - I can write a quadratic function from context (limited to projectile motion). (A.CED.2, F.BF.1)
 HP: I can write a quadratic function from context by combining expressions using addition, subtraction, and/or multiplication operations. (A.APR.1, F.BF.1)
 Learning Target: I can interpret key features of quadratic functions using table, graph, rule, and in context.
 - I can interpret the key features in context of a quadratic function given a graph, and/or table. (Note: key features include domain, zeros, y intercept, maximum/minimum, symmetry, and direction) (F.IF.4,F.IF.5)
 - I can sketch a graph of a quadratic function by identifying and using the key features from the function rule. (F.IF.4, F.IF.7)
 - I can describe the intervals of increase and decrease for a quadratic function. (F.IF.4)
 - I can compare the key features of two quadratic functions represented in different ways. (F.IF.9)
 HP: I can explain the limitations of interpreting key features in context. (F.IF.5, N.Q.3) |

[^6]| Topic | Days | Standards | Needs to be Covered | Learning Targets and "I Can" Statements |
| :---: | :---: | :---: | :---: | :---: |
| | 6 Days
 * There seems to be a bigger emphasis on understanding and applying exponential functions in common core. | N.RN. 1 N.RN. 2 | definition of rational exponents
 rewrite expressions involving radicals/rational expressions
 Properties/Rules of Exponents
 Rational Exponents involving tables | Learning Target: I can rewrite expressions involving exponents.
 - I can apply the rules of exponents to rewrite expressions with integer exponents into equivalent forms. (N.RN.1)
 - I can apply the rules of exponents to rewrite expressions with rational exponents (with a numerator of one). (N.RN.1)
 - I can rewrite expressions involving radicals. (N.RN.2)
 - I can justify why rational exponents do not become a negative value.
 - I can make predictions by writing expressions when given a table of values.
 HP: I can justify the use of the rules of exponents, including $a^{\wedge}(1 / n)$ is the nth root of a. (N.RN.2) |

[^7]| Topic | Days | Standards | Needs to be Covered | Learning Targets and "I Can" Statements |
| :---: | :---: | :---: | :---: | :---: |
| | 5 Days | A.CED. 1
 A.CED. 2
 A.REI. 10
 F.IF. 7
 A.SSE. 1 b
 F.BF. 1
 F.IF. 2
 F.IF. 4
 F.IF. 5
 F.IF.8b
 F.IF. 9
 F.LE. 2
 F.LE. 5
 S.ID. 6 | interpret the parameters in exponential functions in terms of a context
 use properties of exponents to interpret expressions for exponential functions (identify growth/decay)
 interpret complicated expressions as their parts
 create equations and use them to solve problems (exponential regression)
 build a function that describes a relationship between 2 quantities
 understand the graph of an equation often forms a curve and graph exponentials showing intercepts
 use functions notation and relate the domain of a function
 construct exponential functions from a graph, relationship, or input-output pairs
 evaluate exponential functions
 find key features of a graph in applications | Learning Target: I can create and analyze representations of exponential functions.
 - I can create another representation of an exponential pattern given any one of recursive rule, function rule, table, graph, and/or contextual situation.(A.CED.1, 2, F.IF.7, F.BF.1, F.LE.2)
 - I can determine and explain the rate of change and/or initial value of an exponential pattern given any representation. (A.SSE.1, F.LE.5)
 - I can provide a reasonable domain for an exponential function given a contextual situation and/or a graph. (F.IF.5)
 - I can fit an exponential function to data and describe how the variables are related. (S.ID.6)
 HP: I can create an exponential function to model a contextual situation and modify the parameters when additional information is given. (SMP 7)
 Learning Target : I can interpret exponential functions and use them to solve problems.
 - I can compare and contrast two different exponential functions given any representation. (F.IF.9)
 - I can approximate solutions to exponential equations using tables and graphs. (A.CED.1)
 - I can defend the reasonableness of a solution according to the context of the problem.
 - I can simplify an exponential function that uses rational exponents and explain what the values mean in context of the problem. (F.IF.8b)
 HP: I can rewrite exponential expressions from a contextual situation in equivalent forms using the rules of exponents. (F.IF.8b) |

[^8]| Topic | Days | Standards | Needs to be Covered | Learning Targets and "I Can" Statements |
| :---: | :---: | :---: | :---: | :---: |
| | 3 Days | $\begin{aligned} & \text { F.BF. } 3 \\ & \text { F.IF. } 4 \end{aligned}$ | vertical/horizontal translations | Learning Target: I can compare properties of linear, exponential, and quadratic functions.
 - I can examine the translation of a graph of a linear and/or exponential function and rewrite the function rule to show the translation performed. (F.BF.3)
 - I can explain the effects of a linear and/or exponential graph when $f(x)$ is replaced by $f(x)+k$ or $f(x+k)$. (F.BF.3)
 - I can compare and contrast two different exponential functions given any representation. (F.IF.9) |
| | | | | |

[^9]| Topic | Days | Standards | Needs to be Covered | Learning Targets and "I Can" Statements |
| :---: | :---: | :---: | :---: | :---: |
| | 4 Days
 * At this point, review linear, quadratic and exponential functions their graphs and their equations. | $\begin{aligned} & \hline \text { F.IF. } 9 \\ & \text { F.LE. } 1 \\ & \text { F.LE. } 2 \\ & \text { F.LE. } 3 \\ & \text { F.LE. } 5 \end{aligned}$ | observe using functions and tables that a quantity increasing exponentially eventually exceeds a linear or quadratic
 construct and compare, quadratic, linear and exponential models and solve problems
 compare properties of two functions represented in different ways | Learning Target: I can compare properties of linear, exponential, and quadratic functions.
 - I can compare the growth of a linear, exponential, and quadratic function using graphs and tables.(F.LE.3)
 - I can distinguish between situations that can be modeled with linear functions or exponential functions and write a rule. (F.LE.1,2)
 HP: I can experiment with linear and exponential models for a set of data, decide on a model that seems to be a good fit, and justify the decision. |

[^10]
Math I

Topic	Days	Standards	Needs to be Covered	Learning Targets and "I Can" Statements
$$	5 Days	A.CED. 4 A.REI. 3 G.CO. 1 G.GMD. 3 G.GMD. 1 G.GPE. 4 G.GPE. 7 G.GPE. 5 G.GPE. 6	definitions of angle, circle, perpendicular, parallel, line segment midpoint formula distance formula to prove points are on a line and to find perimeters of polygons and areas of triangles/rectangles	Learning Target: I can use coordinates to prove geometric properties. - I can use distance and slope to identify types of triangles or quadrilaterals. (G.GPE.4, G.GPE.5) - I can write the equation of a line that is parallel or perpendicular to a given line (given two points, equation, or a graph). (G.GPE.5, G.CO.1) - I can find the midpoint of a line segment and use it to solve problems (including given the midpoint, find the other endpoint). (G.GPE.4, G.GPE.6) HP: I can use slope, distance, or midpoint to prove unfamiliar properties of shapes. (G.GPE.7) Learning Target : I can apply volume formulas to solve problems. (Formulas for pyramids, cones, and spheres will be given, students must know the formula for a cylinder) - I can apply formulas for volume of pyramids, cylinders, cones, and spheres to solve real-world problems. (G.GMD.1, G.GMD.3) - I can apply formulas for volume of pyramids, cylinders, cones, and spheres to determine the volume of a composite shape. (G.GMD.1, G.GMD.3) - I can use the volume of a shape to determine the value an unknown dimension of that shape. (G.GMD.3,A.REI.3, A.CED.4) HP: I can break down geometric figures into recognizable components to defend formulas for area and volume, including circumference and area of a circle and volume of a cylinder, pyramid, and cone.(G.GMD)

[^11]| Topic | Days | Standards | Needs to be Covered | Learning Targets and "I Can" Statements |
| :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\widetilde{0}}{\stackrel{0}{0}}$ | 5 Days
 * Review plotting points, introduce terms such as point, line segment domain, range. | $\begin{aligned} & \hline \text { S.ID. } 1 \\ & \text { S.ID. } 2 \\ & \text { S.ID. } 3 \\ & \text { S.ID. } 5 \\ & \text { S.ID. } 6 \\ & \text { S.ID. } 7 \\ & \text { S.ID. } 8 \\ & \text { S.ID. } 9 \end{aligned}$ | dot plots, histograms, box plots
 data distribution and spread
 interpret differences in shapes, outliers
 Summarize categorical data for 2 categories in 2 way frequency tables.
 Interpret relative frequencies in the context of the data.
 Recognize possible associations and trends
 Scatter plots
 Linear, quadratic, and exponential models
 Interpret the slop and the intercept of a linear model in the context of the data
 Compute (using technology) and interpret the correlation coefficient of a linear fit
 Distinguish between correlation and causation | Learning Target: I can compare two sets of data using graphs and summary statistics appropriate to the shapes of the graphs.
 - I can create a graph of data, using technology when possible, including dot plots, histograms, and boxplots. (S.ID.1)
 - I can choose, calculate, and interpret a measure of center (mean or median) appropriate to the shape of a distribution. (S.ID.2)
 - I can choose, calculate, and interpret a measure of spread (interquartile range or standard deviation) appropriate to the shape of a distribution. (S.ID.2)
 - I can interpret, in context, differences in the shape, center, and spread of two or more sets of data.(S.ID.3)
 HP: I can create a distribution given the summary statistics.
 Learning Target: I can summarize and interpret categorical data.
 - I can calculate relative frequencies from a two way frequency table. (S.ID.5)
 - I can compare relative frequencies from two different data sets.(S.ID.5)
 - I can use relative frequencies to describe possible associations and trends in data. (S.ID.5)
 HP: I can create and analyze a two way frequency table to analyze categorical data.
 Learning Target: I can create, interpret, and analyze linear models.
 - I can create a scatterplot and analyze it to describe how two variables are related. (S.ID.6)
 - I can find an appropriate function for a set of data and use it to solve problems in the context of the data.(S.ID.6)
 - I can use residuals to assess the fit of a function. (S.ID.6)
 - I can interpret the slope and intercept of a linear model in the |

[^12]		Compute new data after changing a piece of data and compare to origina	context of the data. (S.ID.7) I can assess the strength and direction of a linear association by examining the correlation coefficient (calculated using technology). (S.ID.8) I can identify possible explanations for an association between two variables, including cause-and-effect. (S.ID.9)
HP: I can compare different linear models for the same set of data and justify the choice of one over the other.			

Pacing Guide for Math I

This pacing guide has been divided into units. There are several standards that can be located into different units.
*Standards N.Q.1, N.Q. 2 \& N.Q. 3 need to be reiterated whenever possible.
*Keep in mind that part of the Math I exam is calculator inactive so students will need practice without the calculator.

Unit 1 - Review (2 days)

- Pre-Test
- Introduction to Calculator
- Combining like Terms
- Distributive Property
- Writing expressions/equations
- Patterns

Unit 2 - Equations (4 days)

- Solving all types
- Literal equations
- Use of formulas

Unit 3 - Inequalities (2 days)

- Solve Linear inequalities
- Writing inequalities as a real life application

Unit 4 -Linear Functions (16 days)

- Define functions, domain and range
- Slope (calculating from graph, table, formula and comparing)
- Define parallel and perpendicular
- Solving for y.
- Graphing lines with and without a calculator
- Real life application of slope intercept form.
- Writing equations of lines
${ }^{* *}$ Standards N.Q.1, N.Q. 2 \& N.Q. 3 need to be reiterated whenever possible.
- Reading and understanding scatter plots
- Lines of best fit/Regression

Unit 5 - Systems of Equations/Inequalities (6 days)

- Solving systems of equations using the calculator and elimination.
- Systems of equations application problems (word problems)
- Solving systems of inequalities with a without the calculator

Unit 6 - Polynomials (4 days)

- Adding and subtracting polynomials
- Multiplying Polynomials
- Multiplying binomial by trinomial

Unit 7 - Quadratics (10 days)

- all types of factoring
- Solving quadratics
- Graphing quadratics with and without a calculator
- finding roots, max and min
- Writing equations of quadratics given a table or chart.

Unit 8 - Exponents \& Radicals (6 days)

- Exponent rules
- Zero as an exponent
- Negative Exponents
- Radial notation (rewriting and simplifying)

Unit 9 - Exponential Functions (5 days)

- Graphing
- Growth/Decay
- Writing Equations

Unit 10 - Translations (3 days)

- Understanding movements of up, down, left, right on a graph

Unit 11-Comparing Functions (4 days)

- Compare linear, quadratics, and exponential

Unit 12 - Geometry (5 days)

- Midpoint formula
- Distance Formula
- Perimeter and Area
- Pythagorean Theorem
- Parallel and Perpendicular

Unit 13 - Data (5 days)

- Mean. Median, mode, range, quartiles, interquartiles range, standard deviation.
- Box and Whisker
- Histograms and Dot plots
- Frequency Tables
- Variability and peaks

[^0]: **Standards N.Q.1, N.Q. 2 \& N.Q. 3 need to be reiterated whenever possible.

[^1]: **Standards N.Q.1, N.Q. 2 \& N.Q. 3 need to be reiterated whenever possible.

[^2]: **Standards N.Q.1, N.Q. 2 \& N.Q. 3 need to be reiterated whenever possible.

[^3]: **Standards N.Q.1, N.Q. 2 \& N.Q. 3 need to be reiterated whenever possible.

[^4]: **Standards N.Q.1, N.Q. 2 \& N.Q. 3 need to be reiterated whenever possible.

[^5]: **Standards N.Q.1, N.Q. 2 \& N.Q. 3 need to be reiterated whenever possible.

[^6]: **Standards N.Q.1, N.Q. 2 \& N.Q. 3 need to be reiterated whenever possible.

[^7]: **Standards N.Q.1, N.Q. 2 \& N.Q. 3 need to be reiterated whenever possible.

[^8]: **Standards N.Q.1, N.Q. 2 \& N.Q. 3 need to be reiterated whenever possible.

[^9]: **Standards N.Q.1, N.Q. 2 \& N.Q. 3 need to be reiterated whenever possible.

[^10]: **Standards N.Q.1, N.Q. 2 \& N.Q. 3 need to be reiterated whenever possible.

[^11]: **Standards N.Q.1, N.Q. 2 \& N.Q. 3 need to be reiterated whenever possible.

[^12]: **Standards N.Q.1, N.Q. 2 \& N.Q. 3 need to be reiterated whenever possible.

